

127-I levels in Ontario bulk tank milk and its association with groundwater, milking management, and other risk factors.

C. Rogerson^{*}, D. Kelton^{*}, V. Osborne[¶] J. Levinson[§], and S. Hamilton[†]

*Department of Population Medicine, University of Guelph, Guelph, Ontario *Department of Animal Bioscience, University of Guelph, Guelph, Ontario *School of Engineering, University of Guelph, Guelph, Ontario *Earth Resources and Geoscience Mapping Section, Ontario Geological Survey, Sudbury, Ontario

DAIRY CANADA'S DAIRY UNIVERSITY CANADA'S DAIRY UNIVERSITY UNIVERSITY CHANGING LIVES IMPROVING LIFE

Outline

- 1 Why are we interested in Milk Iodine?
- 2 Research Objective & Approach
- 3 Major Results
- 4 Implications

Why are we interested in Milk I-?

- Mammalian nutrient requirement
 - Thyroid hormone component
 - Cell activity regulators
- Narrow margin of safety
 - Tolerable upper level ~3x's greater than adult requirement
 - 200 vs. 600 mg/d
- Milk & dairy products
 - leading nutritional source
 - lodine secreted into milk
 - Levels have been increasing
 - DFO implemented testing and limits

Current Canadian Milk I⁻ Reports:

- 1) 2011- 2013 DFC funded project Keefe, 2013
- 12,000 farms
- mean BMI = 258, Range <10 to 3,937 ppm
 - 5% of Canadian dairies ship milk with I⁻ levels >500ppm
- Ontario = highest milk I⁻ levels in country
 - 3/5 high risk areas located in Ontario

2) 2010 Canadian study- Borucki Castro, 2010

- o 501 farms
- Mean BMI = 304 μg/kg, Range 54 to 1,902 μg/kg

3) 2004-2005 Canadian study- Robichaud, 2006 (Unpublished)

- 411 retail milk samples (9 provinces)
- 393 μg/kg mean I⁻ content in retail milk

*farms continue to have high milk iodine after controlling for iodine in ration and during/after milking, indicating another source exists.

Research Approach

- Case-Control design
 - 80 commercial dairy herds
 - Eastern ON (n=58) & southwestern ON (n=22)
 - o [milk I⁻] = normal (<300 μ g/L), elevated (300-499 μ g/L), high (>500 μ g/L)
- Farms visited from August September 2016
 - o Bulk tank milk, groundwater, & ration sampled
 - Risk assessment survey completed
- Bulk tank milk & water samples tested for I-127
 - Animal Health Laboratory, University of Guelph
- Survey information (Excel & Stata13)

Objectives:

- 1) Determine [I⁻] in milk sampled from 80 dairy farms
- 2) Identify risk factors associated with high milk iodine

Current Preliminary

Results

- [Milk I-]
 - Ranged 8 to 1,144
 ppb
 - o Mean = 284 ppb
- [H₂O I⁻]
 - Ranged <6.1 to 2100 ppb
 - Mean = 134 ppb

Figure 1. Frequency distribution of farms according to milk iodine concentrations (ppb or micrograms per liter).

Linear Model Results

- I⁻ content in water
 - Significant (+) correlation with BMI
- Type of post disinfectant used
 - Post disinfectants [] ≤5% or ≥10% I⁻ significant (+) correlation
- Post-disinfectant coverage goal
 - Full teat + udder base coverage significant (+) correlation

Figure 2. Two-way scatter plot suggesting a positive linear correlation between BMI and I⁻ content in water.

Implications for Ontario

Dairies

Who is directly impacted by this research:

- Ontario Dairy Producers
- Dairy Farmers of Ontario (DFO)
- Raw milk consistency
- Quality assurance
- Consumer safety
- Maintain marketability

Conclusions & Further Investigations

- Many Ontario dairy producers continue to produce milk containing elevated to high iodine levels
- [Milk I⁻] is influenced by many risk factors
 - Milking Management (Post-dip use & coverage goal)
 - Water Consumption**

Subsequent Investigations:

 Isotopic analysis of iodine-129 (¹²⁹I) and ¹²⁷I/¹²⁹I ratio in samples to fingerprint source of I⁻.

Acknowledgements

This research is supported by:

- Dairy Farmers of Ontario (DFO)
- Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA)
- Ontario Veterinary College (OVC)

Ministry of Agriculture, Food and Rural Affairs **Figure 1.** Areas at risk of having high milk iodine (>500ppm), colours indicate ranking of regions regarding relative risk weighted by dairy herd population in each region.

Figure 4. Two-way scatter plot suggesting a positive linear correlation between BMI and I⁻ content in water with farm ID 1 removed (suggested outlier).